Implements advanced event stacking and grid layout

Introduces a 3-phase algorithm in `EventStackManager` for dynamic event positioning. Groups events by start time proximity to determine optimal layout.

Optimizes horizontal space by using side-by-side grid columns for simultaneous events and allowing non-overlapping events to share stack levels. Supports nested stacking for late-arriving events within grid columns.

Includes comprehensive documentation (`STACKING_CONCEPT.md`) and a visual demonstration (`stacking-visualization.html`) to explain the new layout logic. Updates event rendering to utilize the new manager and adds extensive test coverage.
This commit is contained in:
Janus C. H. Knudsen 2025-10-05 23:54:50 +02:00
parent 57bf122675
commit 2f58ceccd4
8 changed files with 4509 additions and 14 deletions

772
STACKING_CONCEPT.md Normal file
View file

@ -0,0 +1,772 @@
# Event Stacking Concept
**Calendar Plantempus - Visual Event Overlap Management**
---
## Overview
**Event Stacking** is a visual technique for displaying overlapping calendar events by offsetting them horizontally with a cascading effect. This creates a clear visual hierarchy showing which events overlap in time.
---
## Visual Concept
### Basic Stacking
When multiple events overlap in time, they are "stacked" with increasing left margin:
```
Timeline:
08:00 ─────────────────────────────────
09:00 │ Event A starts
│ ┌─────────────────────┐
│ │ Meeting A │
10:00 │ │ │
│ │ Event B starts │
│ │ ┌─────────────────────┐
11:00 │ │ │ Meeting B │
│ └──│─────────────────────┘
│ │ │
12:00 │ │ Event C starts │
│ │ ┌─────────────────────┐
│ └──│─────────────────────┘
13:00 │ │ Meeting C │
│ └─────────────────────┘
14:00 ─────────────────────────────────
Visual Result (stacked view):
┌─────────────────────┐
│ Meeting A │
│ ┌─────────────────────┐
│ │ Meeting B │
└─│─────────────────────┘
│ ┌─────────────────────┐
│ │ Meeting C │
└─│─────────────────────┘
└─────────────────────┘
```
Each subsequent event is offset by **15px** to the right.
---
## Stack Link Data Structure
Stack links create a **doubly-linked list** stored directly in DOM elements as data attributes.
### Interface Definition
```typescript
interface StackLink {
prev?: string; // Event ID of previous event in stack
next?: string; // Event ID of next event in stack
stackLevel: number; // Position in stack (0 = base, 1 = first offset, etc.)
}
```
### Storage in DOM
Stack links are stored as JSON in the `data-stack-link` attribute:
```html
<swp-event
data-event-id="event-1"
data-stack-link='{"stackLevel":0,"next":"event-2"}'>
</swp-event>
<swp-event
data-event-id="event-2"
data-stack-link='{"stackLevel":1,"prev":"event-1","next":"event-3"}'>
</swp-event>
<swp-event
data-event-id="event-3"
data-stack-link='{"stackLevel":2,"prev":"event-2"}'>
</swp-event>
```
### Benefits of DOM Storage
**State follows the element** - No external state management needed
**Survives drag & drop** - Links persist through DOM manipulations
**Easy to query** - Can traverse chain using DOM queries
**Self-contained** - Each element knows its position in the stack
---
## Overlap Detection
Events overlap when their time ranges intersect.
### Time-Based Overlap Algorithm
```typescript
function doEventsOverlap(eventA: CalendarEvent, eventB: CalendarEvent): boolean {
// Two events overlap if:
// - Event A starts before Event B ends AND
// - Event A ends after Event B starts
return eventA.start < eventB.end && eventA.end > eventB.start;
}
```
### Example Cases
**Case 1: Events Overlap**
```
Event A: 09:00 ──────── 11:00
Event B: 10:00 ──────── 12:00
Result: OVERLAP (10:00 to 11:00)
```
**Case 2: No Overlap**
```
Event A: 09:00 ──── 10:00
Event B: 11:00 ──── 12:00
Result: NO OVERLAP
```
**Case 3: Complete Containment**
```
Event A: 09:00 ──────────────── 13:00
Event B: 10:00 ─── 11:00
Result: OVERLAP (Event B fully inside Event A)
```
---
## Visual Styling
### CSS Calculations
```typescript
const STACK_OFFSET_PX = 15;
// For each event in stack:
marginLeft = stackLevel * STACK_OFFSET_PX;
zIndex = 100 + stackLevel;
```
### Example with 3 Stacked Events
```typescript
Event A (stackLevel: 0):
marginLeft = 0 * 15 = 0px
zIndex = 100 + 0 = 100
Event B (stackLevel: 1):
marginLeft = 1 * 15 = 15px
zIndex = 100 + 1 = 101
Event C (stackLevel: 2):
marginLeft = 2 * 15 = 30px
zIndex = 100 + 2 = 102
```
Result: Event C appears on top, Event A at the base.
---
## Optimized Stacking (Smart Stacking)
### The Problem: Naive Stacking vs Optimized Stacking
**Naive Approach:** Simply stack all overlapping events sequentially.
```
Event A: 09:00 ════════════════════════════ 14:00
Event B: 10:00 ═════ 12:00
Event C: 12:30 ═══ 13:00
Naive Result:
Event A: stackLevel 0
Event B: stackLevel 1
Event C: stackLevel 2 ← INEFFICIENT! C doesn't overlap B
```
**Optimized Approach:** Events that don't overlap each other can share the same stack level.
```
Event A: 09:00 ════════════════════════════ 14:00
Event B: 10:00 ═════ 12:00
Event C: 12:30 ═══ 13:00
Optimized Result:
Event A: stackLevel 0
Event B: stackLevel 1 ← Both at level 1
Event C: stackLevel 1 ← because they don't overlap!
```
### Visual Comparison: The Key Insight
**Example Timeline:**
```
Timeline:
09:00 ─────────────────────────────────
│ Event A starts
│ ┌─────────────────────────────┐
10:00 │ │ Event A │
│ │ │
│ │ Event B starts │
│ │ ╔═══════════════╗ │
11:00 │ │ ║ Event B ║ │
│ │ ║ ║ │
12:00 │ │ ╚═══════════════╝ │
│ │ │
│ │ Event C starts │
│ │ ╔═══════════╗ │
13:00 │ │ ║ Event C ║ │
│ └───────╚═══════════╝─────────┘
14:00 ─────────────────────────────────
Key Observation:
• Event B (10:00-12:00) and Event C (12:30-13:00) do NOT overlap!
• They are separated by 30 minutes (12:00 to 12:30)
• Both overlap with Event A, but not with each other
```
**Naive Stacking (Wasteful):**
```
Visual Result (Naive - Inefficient):
┌─────────────────────────────────────────────────┐
│ Event A │
│ ┌─────────────────────┐ │
│ │ Event B │ │
│ │ ┌─────────────────────┐ │
│ └─│─────────────────────┘ │
│ │ Event C │ │
│ └─────────────────────┘ │
└─────────────────────────────────────────────────┘
0px 15px 30px
└──┴────┘
Wasted space!
Stack Levels:
• Event A: stackLevel 0 (marginLeft: 0px)
• Event B: stackLevel 1 (marginLeft: 15px)
• Event C: stackLevel 2 (marginLeft: 30px) ← UNNECESSARY!
Problem: Event C is pushed 30px to the right even though
it doesn't conflict with Event B!
```
**Optimized Stacking (Efficient):**
```
Visual Result (Optimized - Efficient):
┌─────────────────────────────────────────────────┐
│ Event A │
│ ┌─────────────────────┐ ┌─────────────────────┐│
│ │ Event B │ │ Event C ││
│ └─────────────────────┘ └─────────────────────┘│
└─────────────────────────────────────────────────┘
0px 15px 15px
└────────────────────┘
Same offset for both!
Stack Levels:
• Event A: stackLevel 0 (marginLeft: 0px)
• Event B: stackLevel 1 (marginLeft: 15px)
• Event C: stackLevel 1 (marginLeft: 15px) ← OPTIMIZED!
Benefit: Event C reuses stackLevel 1 because Event B
has already ended when Event C starts.
No visual conflict, saves 15px of horizontal space!
```
**Side-by-Side Comparison:**
```
Naive (3 levels): Optimized (2 levels):
A A
├─ B ├─ B
│ └─ C └─ C
Uses 45px width Uses 30px width
(0 + 15 + 30) (0 + 15 + 15)
33% space savings! →
```
### Algorithm: Greedy Stack Level Assignment
The optimized stacking algorithm assigns the lowest available stack level to each event:
```typescript
function createOptimizedStackLinks(events: CalendarEvent[]): Map<string, StackLink> {
// Step 1: Sort events by start time
const sorted = events.sort((a, b) => a.start - b.start)
// Step 2: Track which stack levels are occupied at each time point
const stackLinks = new Map<string, StackLink>()
for (const event of sorted) {
// Find the lowest available stack level for this event
let stackLevel = 0
// Check which levels are occupied by overlapping events
const overlapping = sorted.filter(other =>
other !== event && doEventsOverlap(event, other)
)
// Try each level starting from 0
while (true) {
const levelOccupied = overlapping.some(other =>
stackLinks.get(other.id)?.stackLevel === stackLevel
)
if (!levelOccupied) {
break // Found available level
}
stackLevel++ // Try next level
}
// Assign the lowest available level
stackLinks.set(event.id, { stackLevel })
}
return stackLinks
}
```
### Example Scenarios
#### Scenario 1: Three Events, Two Parallel Tracks
```
Input:
Event A: 09:00-14:00 (long event)
Event B: 10:00-12:00
Event C: 12:30-13:00
Analysis:
A overlaps with: B, C
B overlaps with: A (not C)
C overlaps with: A (not B)
Result:
Event A: stackLevel 0 (base)
Event B: stackLevel 1 (first available)
Event C: stackLevel 1 (level 1 is free, B doesn't conflict)
```
#### Scenario 2: Four Events, Three at Same Level
```
Input:
Event A: 09:00-15:00 (very long event)
Event B: 10:00-11:00
Event C: 11:30-12:30
Event D: 13:00-14:00
Analysis:
A overlaps with: B, C, D
B, C, D don't overlap with each other
Result:
Event A: stackLevel 0
Event B: stackLevel 1
Event C: stackLevel 1 (B is done, level 1 free)
Event D: stackLevel 1 (B and C are done, level 1 free)
```
#### Scenario 3: Nested Events with Optimization
```
Input:
Event A: 09:00-15:00
Event B: 10:00-13:00
Event C: 11:00-12:00
Event D: 12:30-13:30
Analysis:
A overlaps with: B, C, D
B overlaps with: A, C (not D)
C overlaps with: A, B (not D)
D overlaps with: A (not B, not C)
Result:
Event A: stackLevel 0 (base)
Event B: stackLevel 1 (overlaps with A)
Event C: stackLevel 2 (overlaps with A and B)
Event D: stackLevel 2 (overlaps with A only, level 2 is free)
```
### Stack Links with Optimization
**Important:** With optimized stacking, events at the same stack level are NOT linked via prev/next!
```typescript
// Traditional chain (naive):
Event A: { stackLevel: 0, next: "event-b" }
Event B: { stackLevel: 1, prev: "event-a", next: "event-c" }
Event C: { stackLevel: 2, prev: "event-b" }
// Optimized (B and C at same level, no link between them):
Event A: { stackLevel: 0 }
Event B: { stackLevel: 1 } // No prev/next
Event C: { stackLevel: 1 } // No prev/next
```
### Benefits of Optimized Stacking
**Space Efficiency:** Reduces horizontal space usage by up to 50%
**Better Readability:** Events are visually closer, easier to see relationships
**Scalability:** Works well with many events in a day
**Performance:** Same O(n²) complexity as naive approach
### Trade-offs
⚠️ **No Single Chain:** Events at the same level aren't linked, making traversal more complex
⚠️ **More Complex Logic:** Requires checking all overlaps, not just sequential ordering
⚠️ **Visual Ambiguity:** Users might wonder why some events are at the same level
## Stack Chain Operations
### Building a Stack Chain (Naive Approach)
When events overlap, they form a chain sorted by start time:
```typescript
// Input: Events with overlapping times
Event A: 09:00-11:00
Event B: 10:00-12:00
Event C: 11:30-13:00
// Step 1: Sort by start time (earliest first)
Sorted: [Event A, Event B, Event C]
// Step 2: Create links
Event A: { stackLevel: 0, next: "event-b" }
Event B: { stackLevel: 1, prev: "event-a", next: "event-c" }
Event C: { stackLevel: 2, prev: "event-b" }
```
### Traversing Forward
```typescript
// Start at any event
currentEvent = Event B;
// Get stack link
stackLink = currentEvent.dataset.stackLink; // { prev: "event-a", next: "event-c" }
// Move to next event
nextEventId = stackLink.next; // "event-c"
nextEvent = document.querySelector(`[data-event-id="${nextEventId}"]`);
```
### Traversing Backward
```typescript
// Start at any event
currentEvent = Event B;
// Get stack link
stackLink = currentEvent.dataset.stackLink; // { prev: "event-a", next: "event-c" }
// Move to previous event
prevEventId = stackLink.prev; // "event-a"
prevEvent = document.querySelector(`[data-event-id="${prevEventId}"]`);
```
### Finding Stack Root
```typescript
function findStackRoot(event: HTMLElement): HTMLElement {
let current = event;
let stackLink = getStackLink(current);
// Traverse backward until we find an event with no prev link
while (stackLink?.prev) {
const prevEvent = document.querySelector(
`[data-event-id="${stackLink.prev}"]`
);
if (!prevEvent) break;
current = prevEvent;
stackLink = getStackLink(current);
}
return current; // This is the root (stackLevel 0)
}
```
---
## Use Cases
### 1. Adding a New Event to Existing Stack
```
Existing Stack:
Event A (09:00-11:00) - stackLevel 0
Event B (10:00-12:00) - stackLevel 1
New Event:
Event C (10:30-11:30)
Steps:
1. Detect overlap with Event A and Event B
2. Sort all three by start time: [A, B, C]
3. Rebuild stack links:
- Event A: { stackLevel: 0, next: "event-b" }
- Event B: { stackLevel: 1, prev: "event-a", next: "event-c" }
- Event C: { stackLevel: 2, prev: "event-b" }
4. Apply visual styling
```
### 2. Removing Event from Middle of Stack
```
Before:
Event A (stackLevel 0) ─→ Event B (stackLevel 1) ─→ Event C (stackLevel 2)
Remove Event B:
After:
Event A (stackLevel 0) ─→ Event C (stackLevel 1)
Steps:
1. Get Event B's stack link: { prev: "event-a", next: "event-c" }
2. Update Event A's next: "event-c"
3. Update Event C's prev: "event-a"
4. Update Event C's stackLevel: 1 (was 2)
5. Recalculate Event C's marginLeft: 15px (was 30px)
6. Remove Event B's stack link
```
### 3. Moving Event to Different Time
```
Before (events overlap):
Event A (09:00-11:00) - stackLevel 0
Event B (10:00-12:00) - stackLevel 1
Move Event B to 14:00-16:00 (no longer overlaps):
After:
Event A (09:00-11:00) - NO STACK LINK (standalone)
Event B (14:00-16:00) - NO STACK LINK (standalone)
Steps:
1. Detect that Event B no longer overlaps Event A
2. Remove Event B from stack chain
3. Clear Event A's next link
4. Clear Event B's stack link entirely
5. Reset both events' marginLeft to 0px
```
---
## Edge Cases
### Case 1: Single Event (No Overlap)
```
Event A: 09:00-10:00 (alone in time slot)
Stack Link: NONE (no data-stack-link attribute)
Visual: marginLeft = 0px, zIndex = default
```
### Case 2: Two Events, Same Start Time
```
Event A: 10:00-11:00
Event B: 10:00-12:00 (same start, different end)
Sort by: start time first, then by end time (shortest first)
Result: Event A (stackLevel 0), Event B (stackLevel 1)
```
### Case 3: Multiple Separate Chains in Same Column
```
Chain 1:
Event A (09:00-10:00) - stackLevel 0
Event B (09:30-10:30) - stackLevel 1
Chain 2:
Event C (14:00-15:00) - stackLevel 0
Event D (14:30-15:30) - stackLevel 1
Note: Two independent chains, each with their own root at stackLevel 0
```
### Case 4: Complete Containment
```
Event A: 09:00-13:00 (large event)
Event B: 10:00-11:00 (inside A)
Event C: 11:30-12:30 (inside A)
All three overlap, so they form one chain:
Event A - stackLevel 0
Event B - stackLevel 1
Event C - stackLevel 2
```
---
## Algorithm Pseudocode
### Creating Stack for New Event
```
function createStackForNewEvent(newEvent, columnEvents):
// Step 1: Find overlapping events
overlapping = columnEvents.filter(event =>
doEventsOverlap(newEvent, event)
)
if overlapping is empty:
// No stack needed
return null
// Step 2: Combine and sort by start time
allEvents = [...overlapping, newEvent]
allEvents.sort((a, b) => a.start - b.start)
// Step 3: Create stack links
stackLinks = new Map()
for (i = 0; i < allEvents.length; i++):
link = {
stackLevel: i,
prev: i > 0 ? allEvents[i-1].id : undefined,
next: i < allEvents.length-1 ? allEvents[i+1].id : undefined
}
stackLinks.set(allEvents[i].id, link)
// Step 4: Apply to DOM
for each event in allEvents:
element = findElementById(event.id)
element.dataset.stackLink = JSON.stringify(stackLinks.get(event.id))
element.style.marginLeft = stackLinks.get(event.id).stackLevel * 15 + 'px'
element.style.zIndex = 100 + stackLinks.get(event.id).stackLevel
return stackLinks
```
### Removing Event from Stack
```
function removeEventFromStack(eventId):
element = findElementById(eventId)
stackLink = JSON.parse(element.dataset.stackLink)
if not stackLink:
return // Not in a stack
// Update previous element
if stackLink.prev:
prevElement = findElementById(stackLink.prev)
prevLink = JSON.parse(prevElement.dataset.stackLink)
prevLink.next = stackLink.next
prevElement.dataset.stackLink = JSON.stringify(prevLink)
// Update next element
if stackLink.next:
nextElement = findElementById(stackLink.next)
nextLink = JSON.parse(nextElement.dataset.stackLink)
nextLink.prev = stackLink.prev
// Shift down stack level
nextLink.stackLevel = nextLink.stackLevel - 1
nextElement.dataset.stackLink = JSON.stringify(nextLink)
// Update visual styling
nextElement.style.marginLeft = nextLink.stackLevel * 15 + 'px'
nextElement.style.zIndex = 100 + nextLink.stackLevel
// Cascade update to all subsequent events
updateSubsequentStackLevels(nextElement, -1)
// Clear removed element's stack link
delete element.dataset.stackLink
element.style.marginLeft = '0px'
```
---
## Performance Considerations
### Time Complexity
- **Overlap Detection:** O(n) where n = number of events in column
- **Stack Creation:** O(n log n) due to sorting
- **Chain Traversal:** O(n) worst case (entire chain)
- **Stack Removal:** O(n) worst case (update all subsequent)
### Space Complexity
- **Stack Links:** O(1) per event (stored in DOM attribute)
- **No Global State:** All state is in DOM
### Optimization Tips
1. **Batch Updates:** When adding multiple events, batch DOM updates
2. **Lazy Evaluation:** Only recalculate stacks when events change
3. **Event Delegation:** Use event delegation instead of per-element listeners
4. **Virtual Scrolling:** For large calendars, only render visible events
---
## Implementation Guidelines
### Separation of Concerns
**Pure Logic (No DOM):**
- Overlap detection algorithms
- Stack link calculation
- Sorting logic
**DOM Manipulation:**
- Applying stack links to elements
- Updating visual styles
- Chain traversal
**Event Handling:**
- Detecting event changes
- Triggering stack recalculation
- Cleanup on event removal
### Testing Strategy
1. **Unit Tests:** Test overlap detection in isolation
2. **Integration Tests:** Test stack creation with DOM
3. **Visual Tests:** Test CSS styling calculations
4. **Edge Cases:** Test boundary conditions
---
## Future Enhancements
### Potential Improvements
1. **Smart Stacking:** Detect non-overlapping sub-groups and stack independently
2. **Column Sharing:** For events with similar start times, use flexbox columns
3. **Compact Mode:** Reduce stack offset for dense calendars
4. **Color Coding:** Visual indication of stack depth
5. **Stack Preview:** Hover to highlight entire stack chain
---
## Glossary
- **Stack:** Group of overlapping events displayed with horizontal offset
- **Stack Link:** Data structure connecting events in a stack (doubly-linked list)
- **Stack Level:** Position in stack (0 = base, 1+ = offset)
- **Stack Root:** First event in stack (stackLevel 0, no prev link)
- **Stack Chain:** Complete sequence of linked events
- **Overlap:** Two events with intersecting time ranges
- **Offset:** Horizontal margin applied to stacked events (15px per level)
---
**Document Version:** 1.0
**Last Updated:** 2025-10-04
**Status:** Conceptual Documentation - Ready for TDD Implementation